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The “human pipeline” vs machine learning and 
automation - a dichotomy??

• Machine learning helps us where human brain is 
overwhelmed with wealth of data. Conversely, we 
can integrate expert knowledge in these methods.

• Where can we use automation to free the humans 
in the nuclear-data pipeline from repetitive work?

• Machine learning is an exciting subject area that 
draws students/ Postdocs into nuclear data.  
(Would not say “how to train young students for 
this new paradigm”, but rather how can we learn 
along with them-with the help of a data
scientist.) Students/ Postdocs publications in red
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Where in the nuclear-data pipeline can automation 
and ML help us, a few examples:
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Nuclear 
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Tuning
Corrections
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purpose 
Library
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Libraries Application

Integral Exp. Designed 
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Whewell et al., 
NIMA 978, 
164305 (2020).

• Grechanuk et al., 
J. Comput. & 
Theor. Transport 
47, 552 (2019).

• Neudecker et al., 
NDS 167, 36 
(2020).

Lovell et al.,  
J. Phys. G 47, 
114001 (2020).

Schnabel et al., 
arxiv:/2009.00521

Caliva, De Sousa Ribeiro, 
et al., IEEE, 2018.

• Michaud, Kleedtke et al., ANS 
Transactions 121, 1035 (2019).

• Siefman et al., ANE 151 (2021).

Arthur et al., ANE 
133, 853 (2019).
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2 examples of LANL work to show how we transfer 
knowledge to ML and that ML augments the pipeline
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Question: What features of differential exp. lead to 
systematic discrepancies/ outliers in a database?
Why traditional techniques fail: the problem has 37 feature categories (100 
values)  for 24 measurements. ML can help us find trends in data, where 
experts are overwhelmed with data.

Benefit: We are investigating the physics reasons related to 
discrepancies between experiments or outliers. This can help us:
• Add missing unc/ reject data based on physics reasons → more reliable 

nuclear data and uncertainties,
• Design experiments with features known to produce reliable exp. data.

Needle in 
the haystack

…

Flux
IOCH

PPAC
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ML find physics expected features and unexpected 
features related to outliers, brings value to the field.

Needle in 
the haystack

Flux
IOCH

PPAC

Expert knowledge 
fed to ML:
• Exp, data.
• Uncertainties
• Features
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ML find physics expected features and unexpected 
features related to outliers, brings value to the field.

Needle in 
the haystack

Flux
IOCH

PPAC

Find 
outliers

Flux

PPAC
Flux

IOCH

Accepted 
Data Outliers

Expert knowledge 
fed to ML:
• Exp, data.
• Uncertainties
• Features
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ML find physics expected features and unexpected 
features related to outliers, brings value to the field.

Needle in 
the haystack

Flux
IOCH

PPAC

Find 
outliers

Flux

PPAC
Flux

IOCH

Accepted 
Data Outliers

Find 
features 
common 
to outliers

Flux     IOCH     Various

ML answer: Features 
related to outliers.

Expert knowledge 
fed to ML:
• Exp, data.
• Uncertainties
• Features
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Knowledge gained by ML can influence our 
evaluated data.

It is always up to the physicist to decide if the results are helpful. 
ML augments but does not replace expert judgment.

CAVEAT: for this particular problem, we lack the 
infrastructure to apply ML on a large scale.
Natural language processing and SG-50 might help.
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Question: What nuclear data leads to bias between 
simulated and experimental criticality?
Why traditional techniques fail: we simulate 1 criticality value with 1000s of 
nuclear data. ML can help us find trends in data, where experts are 
overwhelmed with data.

Benefit: This information provides input on what nuclear data might need 
to be revisited and corrected: 
• Resolve timely issues in nuclear data → better data for applications,
• Identify need for integral/ differential experiments or new evaluations.

Needle in 
the haystack

…

Neutron Data Standards . . . NUCLEAR DATA SHEETS A.D. Carlson et al.

V. TABULAR DATA FOR THE NEUTRON
STANDARDS

Tabular data for each of the cross section standards and
the additional cross sections obtained in the cross section
standards evaluation process are given in the Tables XII–
XX. For all the evaluations other than those for the light
element standards, the tabular output is directly from
GMAP. For the 6Li(n,t), 10B(n,α) and 10B(n,α1γ) cross
sections the GMAP output was fitted with EDA code as
described in Sec. A. The tables for those cross sections
were provided as point-wise values from EDA. The H(n,n)
and C(n,n) cross sections had been evaluated using EDA
and the tables are direct output from EDA as point-wise
values.

The evaluation of the 252Cf PFNS obtained from
this work led to only very small changes in the spec-
trum obtained by Mannhart. It is recommended that
the Mannhart evaluation be used for any applications. It
is available at https://www-nds.iaea.org/standards/
ref-spectra/ together with the evaluated 235U ther-
mal prompt fission neutron spectrum. The reference fis-
sion cross sections for 209Bi(n,f), natPb(n,f), 235U(n,f),
238U(n,f) and 239Pu(n,f); and the prompt γ-ray pro-
duction reference Cross Sections for 7Li(n,n’γ) and
48Ti(n,n’γ) will be listed and updated on the site https:
//www-nds.iaea.org/standards/. As noted previously,
the 3He(n,p) cross section was not re-evaluated. The pub-
lication on the 2006 standards [1] contains the 3He(n,p)
evaluation.

The GMAP evaluation estimates a point-wise cross sec-
tion and its uncertainty at energy E using experimental
data in the energy range from E1 to E2. However, for
the 235U(n,f) cross section an integral from 7.8–11 eV
is produced with a node average energy 9.4 eV. The in-
terval corresponding to the node at 0.15 keV starts at
0.1 keV both for 235U(n,f) and 239Pu(n,f) cross sections.
From there on, all intervals are located half-way between
given GMA nodes. The results from 1 keV up to 150 keV
correspond to the average of low resolution experiments.
For the 238U(n,f) cross section below 2 MeV (below the
region where it is a standard) results with a denser grid
are marked by “x” and one corrected point is labelled
by “xx”. Smoothing has been applied for regions where
scatter of data needs to be removed since the standards
should be smooth. For all the tabular data, the values in
the standards energy region are recommended to be used
as standards for measurements. The fitted unsmoothed
values were included into the evaluated ENDF-B/VIII.0
general-purpose files in the standard region.
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(a) 239Pu(n,f) experimental data from 4 keV up to 200 MeV.
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(b) 239Pu(n,f) to 235U(n,f) cross section ratio from 1 keV up to
200 MeV.
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FIG. 37. (Color online) Comparison of the 2017 and 2006
standards evaluations, together with experimental data for the
239Pu(n,f) cross section (a) and for the 239Pu(n,f) to 235U(n,f)
cross section ratio (b,c).
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Fig. 5, l?re active portion of ori~”nal Jezebel, the bare plutonium assembly. Cooling air blows wtt of the locating arms
that nudeon taut wires.

thickness was assumed in apportioning the nickel
between external and internal surfaces. Lack of
planeness, however, was assumed to introduce an average
0.001 -in. gap between each of the three principal pairs
of internal surfaces.

Average densities were established by adjusting
measured materiaI densities to allow for the nominal
volume of internal nickel coating and voids. Voids
remaining after correction for internal nickel were
redistributed uniformly (with compensating surface-mass
adjustment, Ref. 3) so that values of average density
were retained.*

*A restate m e nt of the inverse-square relationship between
density and critical mass is that a given mass increment is three
times as effective when distributed uniformly as it is when added
to the surface.

As shown in Figs. 6, 7, and 8, the three Jezebel
systems differed somewhat in shape, which led to
different corrections for asphericity. Further, aluminum
adapters re uired to fit the thin steel clamps (Fig. 5) to
the small !2 s u p arts a d d e d to the incidental reflection

for that assembly. Otherwise, corrections were similar.
Captions of Figs. 6, 7, and 8 give the critical or

slightly subcritical Jezebel configurations from which
critical masses are derived. Also shown are
corresponding masses corrected for the fiiling of major
voids left by missing mass-adjustment plugs or glory-hole
inserts, and by retracted control rod. These corrections
rely upon calibrations of the control rod and plugs.

The further corrections for asphericit y, nickel
coating, incidental reflection by clamps and
surroundings, homogenization, etc., are listed in Table I.
The resulting critical masses apply to isolated bare
spheres of uniform plutonium or uranium.
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ML points towards potential issue in 19F ENDF/B-
VIII.0 nuclear data relevant for validation exp.
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Several 19F nuclear data observables, over 
a broad energy range, were highlighted as 
important to predict bias. →  Correlation 
effects known from traditional validation 
studies hamper ML because it is 
inherent in the data!!!!

Random Forest Results
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Conclusions:

Ø Can ML help our nuclear-data pipeline: Absolutely!!!

Ø ML’s strength: find trends in large amounts of data where human brains are 
overwhelmed. This information may be crucial to improve our nuclear data.

Ø HOWEVER: ML is no silver bullet. It is critical to feed it expert 
knowledge and use physics intuition to interpret results. We need to:
Ø Develop infrastructure and tools to provide data in an easily readable 

and unambiguously interpretable format (e.g., EXFOR format),
Ø Develop experimental data and theory to solve physics questions,
Ø Bring statisticians and nuclear-data experts together to correctly 

interpret the results.

Bottom line: ML is a great tool. We need to use these algorithms 
along with developing physics data, tools and infrastructure.
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